NILMTK
NILMTK
Selectable
Dataset Converters
redd
iawe
ukdale
etc...
Datastore
csv
hdf
Disaggregate
Combinatorial optimisation
FHMM exact
Hart 85
Feature detectors
Cluster
Steady states
Preprocessing
Apply
Clip
Stats
Drop out rate
Good sections
Histogram
Total Energy
Core
Data aligned classes
Dataset
buidings:
store:
metadata:
Building(Hashable)
elec:<MeterGroup>
metadata: about building only
Electric (common methods)
ElecMeter(Hashable)
Appliances:
store:
key:
metadata:
MeterGroup
elecmeters or meter groups
Appliance(Hashable)
metadata:
Timeframe
start:
end:
Timeframegroup(list)
timeframes
Functions
plots
metrics
Infrastructure
utils
version
hashable
consts
node
results
exceptions
docinherit
Phases
Convert
Import data
Train
Disaggregate
Compare effectiveness
Central Metadata
Country
Appliance type
Prior
Disaggregation Model
Data
Dataset
metadata
building
room
ElecMeter
Appliance
dataset
meter devices
timeframe
Buildings
Building
MeterGroups
Meters
Appliances
Key
Dataset id
Building id
Meter id
Dataframe
Time Series
Columns
Power
Active
Apparent
Reactive
Energy
Apparent
Voltage
Current
Frequency
Power factor
Phase Angle
Demos
Buildsys 2014
IAWE
GJW
etc...
Outstanding questions
How is labelled data from training (fingerprints) stored?
How are disaggregation results stored?
Any process for layering daily patterns?
Any thoughts on consumer output?
Any thoughts on consumer input (given no definitive fingerprint database)